

Buy. Rent. Access.

Access student data f les and other study
tools on cengagebrain.com.

For detailed instructions visit
www.cengage.com/ct/studentdownload.

Store your Data Files on a USB drive for maximum eff ciency in
organizing and working with the f les.

Macintosh users should use a program to expand WinZip or PKZip archives.
Ask your instructor or lab coordinator for assistance.

http://www.cengage.com/ct/studentdownload

J AVA
T M

PROGRAMMING

JAVA
TM

PROGRAMMING

JOYCE FARRELL

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

SEV ENTH ED I T I ON

Java Programming,
Seventh Edition
Joyce Farrell

Executive Editor:
Kathleen McMahon

Senior Product Manager:
Alyssa Pratt

Development Editor: Dan Seiter

Editorial Assistant: Sarah Ryan

Brand Manager: Kay Stefanski

Print Buyer: Julio Esperas

Art and Design Direction,
Production Management, and
Composition: Integra Software
Services Pvt. Ltd.

Cover Designer: Lisa Kuhn/Curio
Press, LLC www.curiopress.com

Cover Photo: © Leigh Prather/Veer

Copyeditor: Mark Goodin

Proofreader: Pamela Hunt

Indexer: Alexandra Nickerson

© 2014 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or
by any means—graphic, electronic, or mechanical, including but not
limited to photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage and
retrieval systems, except as permitted under Section 107 or 108 of the
1976 United States Copyright Act, without the prior written
permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,

submit all requests online at www.cengage.com/permissions.

Further permissions questions can be emailed to

permissionrequest@cengage.com.

Library of Congress Control Number: 2012953690

Student Edition:

ISBN-13: 978-1-285-08195-3
ISBN-10: 1-285-08195-1

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning
solutions with office locations around the globe, including Singapore,
the United Kingdom, Australia, Mexico, Brazil and Japan. Locate your
local office at international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your course and learning solutions, visit
www.cengage.com.

Purchase any of our products at your local college store
or at our preferred online store: www.CengageBrain.com.

Instructors: Please visit login.cengage.com and log in to access
instructor-specific resources.

Printed in the United States of America
1 2 3 4 5 6 18 17 16 15 14 13

http://www.curiopress.com
http://www.cengage.com/permissions
mailto:permissionrequest@cengage.com
http://www.cengage.com
http://www.CengageBrain.com

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to

remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by

ISBN#, author, title, or keyword for materials in your areas of interest.

http://www.cengage.com/highered

Brief Contents

Preface . xxi

CHAPTER 1 Creat ing Java Programs 1

CHAPTER 2 Using Data . 51

CHAPTER 3 Using Methods, Classes, and Objects 117

CHAPTER 4 More Object Concepts 179

CHAPTER 5 Making Decis ions 241

CHAPTER 6 Looping . 299

CHAPTER 7 Characters, Str ings, and the StringBuilder 349

CHAPTER 8 Arrays . 397

CHAPTER 9 Advanced Array Concepts 443

CHAPTER 10 Introduct ion to Inher i tance 499

CHAPTER 11 Advanced Inheri tance Concepts 547

CHAPTER 12 Except ion Handl ing 603

CHAPTER 13 Fi le Input and Output 675

CHAPTER 14 Introduct ion to Swing Components 739

CHAPTER 15 Advanced GUI Topics 801

CHAPTER 16 Graphics . 879

CHAPTER 17 Applets, Images, and Sound 945

APPENDIX A Working with the Java Platform 993

APPENDIX B Learning About Data Representat ion 1001

APPENDIX C Formatt ing Output 1009

APPENDIX D Generat ing Random Numbers 1021

APPENDIX E Javadoc . 1029

Glossary . 1037

Index . 1063

v

Contents

Preface xxi

CHAPTER 1 Creating Java Programs 1

Learning Programming Terminology 2
Comparing Procedural and Object-Oriented Programming

Concepts . 5
Procedural Programming 5
Object-Oriented Programming 5
Understanding Classes, Objects, and Encapsulation 6
Understanding Inheritance and Polymorphism 8

Features of the Java Programming Language 10
Java Program Types . 11

Analyzing a Java Application that Produces Console Output 12
Understanding the Statement that Produces the Output 13
Understanding the First Class 14
Indent Style . 17
Understanding the main() Method 18
Saving a Java Class . 20

Compiling a Java Class and Correcting Syntax Errors 22
Compiling a Java Class 22
Correcting Syntax Errors 23

Running a Java Application and Correcting Logical Errors 28
Running a Java Application 28
Modifying a Compiled Java Class 29
Correcting Logical Errors 30

Adding Comments to a Java Class 31
Creating a Java Application that Produces GUI Output 34
Finding Help . 37
Don’t Do It . 38
Key Terms . 40

vi

Chapter Summary . 44
Review Questions . 45
Exercises . 47
Programming Exercises 47
Debugging Exercises 49
Game Zone . 49
Case Problems . 50

CHAPTER 2 Using Data 51

Declaring and Using Constants and Variables 52
Declaring Variables . 53
Declaring Named Constants 54
The Scope of Variables and Constants 56
Concatenating Strings to Variables and Constants 56
Pitfall: Forgetting That a Variable Holds One Value at a Time . . . 58

Learning About Integer Data Types 62
Using the boolean Data Type 67
Learning About Floating-Point Data Types 69
Using the char Data Type 70
Using the Scanner Class to Accept Keyboard Input 76
Pitfall: Using nextLine() Following One of the

Other Scanner Input Methods 79
Using the JOptionPane Class to Accept GUI Input 85
Using Input Dialog Boxes 85
Using Confirm Dialog Boxes 89

Performing Arithmetic . 91
Associativity and Precedence 93
Writing Arithmetic Statements Efficiently 94
Pitfall: Not Understanding Imprecision in

Floating-Point Numbers 94
Understanding Type Conversion 99
Automatic Type Conversion 99
Explicit Type Conversions 100

Don’t Do It . 104
Key Terms . 105
Chapter Summary . 109
Review Questions . 109

vii

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercises . 112
Programming Exercises 112
Debugging Exercises 115
Game Zone . 115
Case Problems . 116

CHAPTER 3 Using Methods, Classes, and Objects 117

Understanding Method Calls and Placement 118
Understanding Method Construction 121
Access Specifiers . 121
Return Type . 122
Method Name . 123
Parentheses . 123

Adding Parameters to Methods 127
Creating a Method That Receives a Single Parameter 128
Creating a Method That Requires Multiple Parameters 130

Creating Methods That Return Values 133
Chaining Method Calls 135

Learning About Classes and Objects 139
Creating a Class . 142
Creating Instance Methods in a Class 143
Organizing Classes 147

Declaring Objects and Using Their Methods 151
Understanding Data Hiding 153

An Introduction to Using Constructors 156
Understanding That Classes Are Data Types 160
Don’t Do It . 165
Key Terms . 165
Chapter Summary . 167
Review Questions . 168
Exercises . 171
Programming Exercises 171
Debugging Exercises 175
Game Zone . 175
Case Problems . 176

viii

C O N T E N T S

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 4 More Object Concepts 179

Understanding Blocks and Scope 180
Overloading a Method 188
Automatic Type Promotion in Method Calls 190

Learning About Ambiguity 195
Creating and Calling Constructors with Parameters 196
Overloading Constructors 197

Learning About the this Reference 201
Using the this Reference to Make Overloaded Constructors More

Efficient . 205
Using static Fields 208
Using Constant Fields 210

Using Automatically Imported, Prewritten Constants and Methods 215
Importing Classes That Are Not Imported Automatically 217
Using the GregorianCalendar Class 219

Understanding Composition and Nested Classes 225
Composition . 225
Nested Classes . 227

Don’t Do It . 229
Key Terms . 229
Chapter Summary . 231
Review Questions . 232
Exercises . 234
Programming Exercises 234
Debugging Exercises 237
Game Zone . 238
Case Problems . 239

CHAPTER 5 Making Decisions 241

Planning Decision-Making Logic 242
The if and if…else Structures 244
Pitfall: Misplacing a Semicolon in an if Statement 245
Pitfall: Using the Assignment Operator Instead of the

Equivalency Operator 246
Pitfall: Attempting to Compare Objects Using

the Relational Operators 246
The if…else Structure 247

ix

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using Multiple Statements in if and if…else Clauses 250
Nesting if and if…else Statements 256
Using Logical AND and OR Operators 259
The AND Operator . 259
The OR Operator . 261
Short-Circuit Evaluation 262

Making Accurate and Efficient Decisions 265
Making Accurate Range Checks 265
Making Efficient Range Checks 268
Using && and || Appropriately 269

Using the switch Statement 270
Using the Conditional and NOT Operators 276
Using the NOT Operator 277

Understanding Operator Precedence 278
Adding Decisions and Constructors to Instance Methods 281
Don’t Do It . 285
Key Terms . 285
Chapter Summary . 287
Review Questions . 287
Exercises . 291
Programming Exercises 291
Debugging Exercises 295
Game Zone . 295
Case Problems . 297

CHAPTER 6 Looping 299

Learning About the Loop Structure 300
Creating while Loops 301
Writing a Definite while Loop 301
Pitfall: Failing to Alter the Loop Control Variable Within

the Loop Body . 303
Pitfall: Creating a Loop with an Empty Body 304
Altering a Definite Loop’s Control Variable 305
Writing an Indefinite while Loop 306
Validating Data . 308

Using Shortcut Arithmetic Operators 312
Creating a for Loop 317

x

C ON T E N T S

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning How and When to Use a do…while Loop 321
Learning About Nested Loops 324
Improving Loop Performance 329
Avoiding Unnecessary Operations 329
Considering the Order of Evaluation of Short-Circuit Operators . 330
Comparing to Zero 331
Employing Loop Fusion 332
Using Prefix Incrementing Rather than Postfix Incrementing . . 332

Don’t Do It . 337
Key Terms . 337
Chapter Summary . 339
Review Questions . 339
Exercises . 342
Programming Exercises 342
Debugging Exercises 346
Game Zone . 346
Case Problems . 348

CHAPTER 7 Characters, Strings, and the StringBuilder 349

Understanding String Data Problems 350
Manipulating Characters 351
Declaring and Comparing String Objects 357
Comparing String Values 357
Empty and null Strings 361

Using Other String Methods 363
Converting String Objects to Numbers 370
Learning About the StringBuilder and

StringBuffer Classes 374
Don’t Do It . 382
Key Terms . 382
Chapter Summary . 384
Review Questions . 385
Exercises . 387
Programming Exercises 387
Debugging Exercises 391
Game Zone . 391
Case Problems . 394

xi

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 8 Arrays 397

Declaring Arrays . 398
Initializing an Array . 403
Using Variable Subscripts with an Array 406
Using Part of an Array 408

Declaring and Using Arrays of Objects 410
Using the Enhanced for Loop with Objects 412
Manipulating Arrays of Strings 412

Searching an Array and Using Parallel Arrays 418
Using Parallel Arrays 418
Searching an Array for a Range Match 421

Passing Arrays to and Returning Arrays from Methods 425
Returning an Array from a Method 429

Don’t Do It . 431
Key Terms . 431
Chapter Summary . 432
Review Questions . 433
Exercises . 436
Programming Exercises 436
Debugging Exercises 439
Game Zone . 439
Case Problems . 441

CHAPTER 9 Advanced Array Concepts 443

Sorting Array Elements Using the Bubble Sort Algorithm 444
Using the Bubble Sort Algorithm 445
Sorting Arrays of Objects 447

Sorting Array Elements Using the Insertion Sort Algorithm 453
Using Two-Dimensional and Other Multidimensional Arrays 457
Passing a Two-Dimensional Array to a Method 460
Using the length Field with a Two-Dimensional Array 460
Understanding Ragged Arrays 462
Using Other Multidimensional Arrays 462

Using the Arrays Class 465
Using the ArrayList Class 473
Understanding the Limitations of the ArrayList Class . . . 478

Creating Enumerations 479
Don’t Do It . 486

xii

C O N T E N T S

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms . 486
Chapter Summary . 487
Review Questions . 488
Exercises . 492
Programming Exercises 492
Debugging Exercises 495
Game Zone . 495
Case Problems . 498

CHAPTER 10 Introduction to Inheritance 499

Learning About the Concept of Inheritance 500
Diagramming Inheritance Using the UML 500
Inheritance Terminology 503

Extending Classes . 504
Overriding Superclass Methods 511
Calling Constructors During Inheritance 514
Using Superclass Constructors That Require Arguments . . . 516

Accessing Superclass Methods 521
Comparing this and super 523

Employing Information Hiding 524
Methods You Cannot Override 526
A Subclass Cannot Override static

Methods in Its Superclass 526
A Subclass Cannot Override final

Methods in Its Superclass 530
A Subclass Cannot Override Methods

in a final Superclass 532
Don’t Do It . 533
Key Terms . 533
Chapter Summary . 535
Review Questions . 536
Exercises . 539
Programming Exercises 539
Debugging Exercises 543
Game Zone . 543
Case Problems . 544

xiii

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 11 Advanced Inheritance Concepts 547

Creating and Using Abstract Classes 548
Using Dynamic Method Binding 557
Using a Superclass as a Method Parameter Type 559

Creating Arrays of Subclass Objects 561
Using the Object Class and Its Methods 565
Using the toString() Method 566
Using the equals() Method 569

Using Inheritance to Achieve Good Software Design 572
Creating and Using Interfaces 574
Creating Interfaces to Store Related Constants 579

Creating and Using Packages 583
Don’t Do It . 589
Key Terms . 589
Chapter Summary . 590
Review Questions . 591
Exercises . 594
Programming Exercises 594
Debugging Exercises 599
Game Zone . 599
Case Problems . 600

CHAPTER 12 Exception Handl ing 603

Learning About Exceptions 604
Trying Code and Catching Exceptions 609
Using a try Block to Make Programs “Foolproof” 614
Declaring and Initializing Variables in try…catch Blocks . . . 616

Throwing and Catching Multiple Exceptions 619
Using the finally Block 625
Understanding the Advantages of Exception Handling 628
Specifying the Exceptions That a Method Can Throw 631
Tracing Exceptions Through the Call Stack 636
Creating Your Own Exception Classes 641
Using Assertions . 645
Don’t Do It . 661
Key Terms . 661
Chapter Summary . 663

xiv

C O N T E N T S

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions . 664
Exercises . 667
Programming Exercises 667
Debugging Exercises 672
Game Zone . 672
Case Problems . 672

CHAPTER 13 Fi le Input and Output 675

Understanding Computer Files 676
Using the Path and Files Classes 677
Creating a Path . 678
Retrieving Information About a Path 679
Converting a Relative Path to an Absolute One 680
Checking File Accessibility 681
Deleting a Path . 683
Determining File Attributes 684

File Organization, Streams, and Buffers 688
Using Java’s IO Classes 690
Writing to a File . 693
Reading from a File 695

Creating and Using Sequential Data Files 697
Learning About Random Access Files 703
Writing Records to a Random Access Data File 707
Reading Records from a Random Access Data File 714
Accessing a Random Access File Sequentially 714
Accessing a Random Access File Randomly 715

Don’t Do It . 729
Key Terms . 730
Chapter Summary . 731
Review Questions . 732
Exercises . 735
Programming Exercises 735
Debugging Exercises 737
Game Zone . 738
Case Problems . 738

xv

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 14 Introduction to Swing Components 739

Understanding Swing Components 740
Using the JFrame Class 741
Customizing a JFrame’s Appearance 744

Using the JLabel Class 748
Changing a JLabel’s Font 750

Using a Layout Manager 753
Extending the JFrame Class 756
Adding JTextFields, JButtons, and Tool Tips to a JFrame . . 758
Adding JTextFields 758
Adding JButtons 760
Using Tool Tips . 762

Learning About Event-Driven Programming 765
Preparing Your Class to Accept Event Messages 766
Telling Your Class to Expect Events to Happen 767
Telling Your Class How to Respond to Events 767
Using the setEnabled() Method 770

Understanding Swing Event Listeners 774
Using the JCheckBox, ButtonGroup, and

JComboBox Classes 778
The JCheckBox Class 778
The ButtonGroup Class 781
The JComboBox Class 782

Don’t Do It . 790
Key Terms . 790
Chapter Summary . 792
Review Questions . 793
Exercises . 796
Programming Exercises 796
Debugging Exercises 798
Game Zone . 798
Case Problems . 799

CHAPTER 15 Advanced GUI Topics 801

Understanding the Content Pane 802
Using Color . 805
Learning More About Layout Managers 808
Using BorderLayout 809

xvi

C O N T E N T S

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using FlowLayout 811
Using GridLayout 813
Using CardLayout 815
Using Advanced Layout Managers 817

Using the JPanel Class 826
Creating JScrollPanes 834
A Closer Look at Events and Event Handling 837
An Event-Handling Example: KeyListener 840

Using AWTEvent Class Methods 843
Understanding x- and y-Coordinates 845

Handling Mouse Events 846
Using Menus . 851
Using JCheckBoxMenuItem and JRadioButtonMenuItem

Objects . 855
Using addSeparator() 857
Using setMnemonic() 857

Don’t Do It . 864
Key Terms . 864
Chapter Summary . 866
Review Questions . 867
Exercises . 870
Programming Exercises 870
Debugging Exercises 871
Game Zone . 872
Case Problems . 877

CHAPTER 16 Graphics 879

Learning About the paint() and repaint() Methods 880
Using the setLocation() Method 882
Creating Graphics Objects 884

Using the drawString() Method 885
Using the setFont() and setColor() Methods 886
Using Color . 887

Drawing Lines and Shapes 893
Drawing Lines . 893
Drawing Rectangles 894
Creating Shadowed Rectangles 897

xvii

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Drawing Ovals . 898
Drawing Arcs . 899
Creating Polygons . 901
Copying an Area . 903
Using the paintComponent() Method with JPanels . . . 903

Learning More About Fonts 909
Discovering Screen Statistics Using the Toolkit Class . . . 912
Discovering Font Statistics 912

Drawing with Java 2D Graphics 920
Specifying the Rendering Attributes 920
Setting a Drawing Stroke 922
Creating Objects to Draw 923

Don’t Do It . 930
Key Terms . 931
Chapter Summary . 933
Review Questions . 933
Exercises . 936
Programming Exercises 936
Debugging Exercises 940
Game Zone . 940
Case Problems . 943

CHAPTER 17 Applets, Images, and Sound 945

Introducing Applets . 946
Understanding the JApplet Class 946
Running an Applet . 947

Writing an HTML Document to Host an Applet 948
Using the init() Method 950
Working with JApplet Components 955
Understanding the JApplet Life Cycle 961
The init() Method 961
The start() Method 962
The stop() Method 962
The destroy() Method 962

Understanding Multimedia and Using Images 968
Adding Images to JApplets 969
Using ImageIcons 971

CON T E N T S

xviii

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Adding Sound to JApplets 977
Don’t Do It . 980
Key Terms . 980
Chapter Summary . 981
Review Questions . 982
Exercises . 985
Programming Exercises 985
Debugging Exercises 987
Game Zone . 988
Case Problems . 992

APPENDIX A Working with the Java Platform 993

Configuring Windows to Work with the Java SE Development Kit . 994
Finding the Command Prompt 995
Command Prompt Anatomy 995
Changing Directories 995
Setting the class and classpath Variables 996
Changing a File’s Name 997
Compiling and Executing a Java Program 997

Using Notepad to Save and Edit Source Code 998
Using TextPad to Work with Java 998
Key Terms . 999

APPENDIX B Learning About Data Representation . . . 1001

Understanding Numbering Systems 1002
Representing Numeric Values 1004
Representing Character Values 1006
Key Terms . 1007

APPENDIX C Formatting Output 1009

Rounding Numbers . 1010
Using the printf() Method 1011
Specifying a Number of Decimal Places to Display

with printf() . 1015
Specifying a Field Size with printf() 1015
Using the Optional Argument Index with printf() 1016

xix

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using the DecimalFormat Class 1017
Key Terms . 1018

APPENDIX D Generating Random Numbers 1021

Understanding Random Numbers Generated by Computers . . . 1022
Using the Math.random() Method 1023
Using the Random Class 1024
Key Terms . 1027

APPENDIX E Javadoc 1029

The Javadoc Documentation Generator 1030
Javadoc Comment Types 1030
Generating Javadoc Documentation 1032
Specifying Visibility of Javadoc Documentation 1035

Key Terms . 1036

Glossary 1037

Index 1063

xx

C ON T E N T S

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface

Java Programming, Seventh Edition, provides the beginning programmer with a guide to
developing applications using the Java programming language. Java is popular among
professional programmers because it can be used to build visually interesting graphical user
interface (GUI) and Web-based applications. Java also provides an excellent environment for
the beginning programmer—a student can quickly build useful programs while learning the
basics of structured and object-oriented programming techniques.

This textbook assumes that you have little or no programming experience. This book
provides a solid background in good object-oriented programming techniques and introduces
terminology using clear, familiar language. The writing is nontechnical and emphasizes good
programming practices. The programming examples are business examples; they do not
assume a mathematical background beyond high-school business math. In addition, the
examples illustrate only one or two major points; they do not contain so many features
that you become lost following irrelevant and extraneous details. The explanations in this
textbook are written clearly in straightforward sentences, making it easier for native and
non-native English speakers alike to master the programming concepts. Complete, working
programs appear frequently in each chapter; these examples help students make the
transition from the theoretical to the practical. The code presented in each chapter can also
be downloaded from the publisher’s Web site, so students can easily run the programs and
experiment with changes to them.

The student using Java Programming, Seventh Edition, builds applications from the bottom
up rather than starting with existing objects. This facilitates a deeper understanding of the
concepts used in object-oriented programming and engenders appreciation for the existing
objects students use as their knowledge of the language advances. When students complete
this book, they will know how to modify and create simple Java programs, and they will have
the tools to create more complex examples. They also will have a fundamental knowledge of
object-oriented programming, which will serve them well in advanced Java courses or in
studying other object-oriented languages such as C++, C#, and Visual Basic.

Organization and Coverage
Java Programming, Seventh Edition, presents Java programming concepts, enforcing good
style, logical thinking, and the object-oriented paradigm. Objects are covered right from the
beginning, earlier than in many other textbooks. You create your first Java program in
Chapter 1. Chapters 2, 3, and 4 increase your understanding of how data, classes, objects, and
methods interact in an object-oriented environment.

xxi

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapters 5 and 6 explore input and repetition structures, which are the backbone of
programming logic and essential to creating useful programs in any language. You learn the
special considerations of string and array manipulation in Chapters 7, 8, and 9.

Chapters 10, 11, and 12 thoroughly cover inheritance and exception handling. Inheritance is
the object-oriented concept that allows you to develop new objects quickly by adapting the
features of existing objects; exception handling is the object-oriented approach to handling
errors. Both are important concepts in object-oriented design. Chapter 13 provides
information on handling files so you can permanently store and retrieve program output.

Chapters 14 and 15 introduce GUI Swing components—Java’s visually pleasing, user-friendly
widgets—and their layout managers. Chapters 16 and 17 show you ways to provide
interactive excitement using graphics, applets, images, and sound.

Features
The following features are new for the Seventh Edition:

l YOU DO IT: In each chapter, step-by-step exercises help students create multiple working
programs that emphasize the logic a programmer uses in choosing statements to include.
These sections provide a means for students to achieve success on their own—even those
in online or distance learning classes. Previous editions of the book contained a long,
multipart “You Do It” section at the end of each chapter, but in this edition, more and
shorter sections follow important chapter topics so the student can focus on one new
concept at a time.

l CASES: Each chapter contains two running case problems. These cases represent projects
that continue to grow throughout a semester using concepts learned in each new chapter.
Two cases allow instructors to assign different cases in alternate semesters or to divide
students in a class into two case teams.

l PROGRAMMING EXERCISES: Each chapter concludes with meaningful programming
exercises that provide additional practice of the skills and concepts learned in the chapter.
These exercises vary in difficulty and are designed to allow exploration of logical
programming concepts. Each chapter contains several new programming exercises not
seen in previous editions.

l INCREASED EMPHASIS ON STUDENT RESEARCH: In this edition, the student frequently
is directed to the Java Web site to investigate classes and methods. Computer languages
evolve, and programming professionals must understand how to find the latest language
improvements. This book encourages independent research.

Additionally, Java Programming, Seventh Edition, includes the following features:

l OBJECTIVES: Each chapter begins with a list of objectives so you know the topics that will
be presented in the chapter. In addition to providing a quick reference to topics covered,
this feature provides a useful study aid.

xxii

P R E F A C E Features

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l NOTES: These highlighted tips provide additional information—for example, an
alternative method of performing a procedure, another term for a concept, background
information on a technique, or a common error to avoid.

l FIGURES: Each chapter contains many figures. Code figures are most frequently 25 lines
or fewer, illustrating one concept at a time. Frequent screen shots show exactly how
program output appears. Callouts appear where needed to emphasize a point.

l COLOR: The code figures in each chapter contain all Java keywords in blue. This helps
students identify keywords more easily, distinguishing them from programmer-selected
names.

l FILES: More than 200 student files can be downloaded from the publisher’s Web site.
Most files contain the code presented in the figures in each chapter; students can run
the code for themselves, view the output, and make changes to the code to observe the
effects. Other files include debugging exercises that help students improve their
programming skills.

l TWO TRUTHS AND A LIE: A short quiz reviews each chapter section, with answers
provided. This quiz contains three statements based on the preceding section of text—two
statements are true and one is false. Over the years, students have requested answers
to problems, but we have hesitated to distribute them in case instructors want to use
problems as assignments or test questions. These true-false quizzes provide students with
immediate feedback as they read, without “giving away” answers to the multiple-choice
questions and programming exercises.

l DON’T DO IT: This section at the end of each chapter summarizes common mistakes and
pitfalls that plague new programmers while learning the current topic.

l KEY TERMS: Each chapter includes a list of newly introduced vocabulary, shown in the
order of appearance in the text. The list of key terms provides a short review of the major
concepts in the chapter.

l SUMMARIES: Following each chapter is a summary that recaps the programming
concepts and techniques covered in the chapter. This feature provides a concise means for
students to check their understanding of the main points in each chapter.

l REVIEW QUESTIONS: Each chapter includes 20 multiple-choice questions that serve as a
review of chapter topics.

l GAME ZONE: Each chapter provides one or more exercises in which students create
interactive games using the programming techniques learned up to that point; 70 game
programs are suggested in the book. The games are fun to create and play; writing them
motivates students to master the necessary programming techniques. Students might
exchange completed game programs with each other, suggesting improvements and
discovering alternate ways to accomplish tasks.

l GLOSSARY: A glossary contains definitions for all key terms in the book, presented in
alphabetical order.

xxiii

Features

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

l APPENDICES: This edition includes useful appendices on working with the Java platform,
data representation, formatting output, generating random numbers, and creating Javadoc
comments.

l QUALITY: Every program example, exercise, and game solution was tested by the author
and then tested again by a quality assurance team using Java Standard Edition (SE) 7, the
most recent version available.

CourseMate
The more you study, the better the results. Make the most of your study time by accessing
everything you need to succeed in one place. Read your textbook, take notes, review
flashcards, watch videos, and take practice quizzes online. CourseMate goes beyond the book
to deliver what you need! Learn more at www.cengage.com/coursemate.

The Java Programming CourseMate includes:

l Debugging Exercises: Four error-filled programs accompany each chapter. By
debugging these programs, students can gain expertise in program logic in general and the
Java programming language in particular.

l Video Lessons: Each chapter is accompanied by at least three video lessons that help to
explain important chapter concepts. These videos were created and narrated by the
author.

l Interactive Study Aids: An interactive eBook, quizzes, flashcards, and more!

Instructors may add CourseMate to the textbook package, or students may purchase
CourseMate directly at www.CengageBrain.com.

Instructor Resources
The following teaching tools are available for download at our Instructor Companion Site.
Simply search for this text at login.cengage.com. An instructor login is required.

l Electronic Instructor’s Manual: The Instructor’s Manual that accompanies this
textbook includes additional instructional material to assist in class preparation, including
items such as Overviews, Chapter Objectives, Teaching Tips, Quick Quizzes, Class
Discussion Topics, Additional Projects, Additional Resources, and Key Terms. A sample
syllabus is also available. Additional exercises in the Instructor’s Manual include:

� Tough Questions: Two or more fairly difficult questions that an applicant might
encounter in a technical job interview accompany each chapter. These questions are
often open-ended; some involve coding and others might involve research.

� Up for Discussion: A few thought-provoking questions concerning programming in
general or Java in particular supplement each chapter. The questions can be used to
start classroom or online discussions, or to develop and encourage research, writing,
and language skills.

xxiv

P R E F A C E Instructor Resources

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cengage.com/coursemate
http://www.CengageBrain.com

� Programming exercises and solutions: Each chapter is accompanied by several
programming exercises to supplement those offered in the text. Instructors can use
these exercises as additional or alternate assignments, or as the basis for lectures.

l ExamView: This textbook is accompanied by ExamView, a powerful testing software
package that allows instructors to create and administer printed, computer (LAN-based),
and Internet-based exams. ExamView includes hundreds of questions that correspond to
the topics covered in this text, enabling students to generate detailed study guides that
include page references for further review. The computer-based and Internet testing
components allow students to take exams at their computers, and they save the instructor
time by grading each exam automatically. These test banks are also available in
Blackboard-compatible formats.

l PowerPoint Presentations: This text provides PowerPoint slides to accompany each
chapter. Slides may be used to guide classroom presentations, to make available to
students for chapter review, or to print as classroom handouts. Files are provided for every
figure in the text. Instructors may use the files to customize PowerPoint slides, illustrate
quizzes, or create handouts.

l Solutions: Solutions to “You Do It” exercises and all end-of-chapter exercises are
available. Annotated solutions are provided for some of the multiple-choice Review
Questions. For example, if students are likely to debate answer choices or not understand
the choice deemed to be the correct one, a rationale is provided.

Acknowledgements
I would like to thank all of the people who helped to make this book a reality, including Dan
Seiter, Development Editor; Alyssa Pratt, Senior Product Manager; Sreejith Govindan,
Content Project Manager; and Chris Scriver and Serge Palladino, Quality Assurance Testers.
I am lucky to work with these professionals who are dedicated to producing high-quality
instructional materials.

I am also grateful to the reviewers who provided comments and encouragement during this
book’s development, including Lee Cottrell, Bradford School, Pittsburgh; Irene Edge, Kent
State University; Susan Peterson, Henry Ford Community College; and Jackie Turner, Central
Georgia Technical College.

Thanks, too, to my husband, Geoff, for his constant support and encouragement. Finally, this
book is dedicated to Ruth LaFreniere, who brought us Stella, and Bob LaFreniere, who let her.

Joyce Farrell

xxv

Acknowledgements

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Read This Before
You Begin
The following information will help you as you prepare to use this textbook.

To the User of the Data Files
To complete the steps and projects in this book, you need data files that have been created
specifically for this book. Your instructor will provide the data files to you. You also can
obtain the files electronically from www.CengageBrain.com. Find the ISBN of your title on
the back cover of your book, then enter the ISBN in the search box at the top of the
Cengage Brain home page. You can find the data files on the product page that opens. Note
that you can use a computer in your school lab or your own computer to complete the
exercises in this book.

Using Your Own Computer
To use your own computer to complete the steps and exercises, you need the following:

l Software: Java SE 7, available from www.oracle.com/technetwork/java/index.html. Although
almost all of the examples in this book will work with earlier versions of Java, this book was
created using Java 7. The book clearly points out the few cases when an example is based on
Java 7 and will not work with earlier versions of Java. You also need a text editor, such as
Notepad. A few exercises ask you to use a browser, such as Internet Explorer.

l Hardware: If you are using Windows 7, the Java Web site suggests at least 128 MB
of memory and at least 98 MB of disk space. For other operating system requirements,
see http://java.com/en/download/help.

xxvi

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.CengageBrain.com
http://java.com/en/download/help

Features
This text focuses on helping students become better programmers and understand
Java program development through a variety of key features. In addition to chapter
Objectives, Summaries, and Key Terms, these useful features will help students
regardless of their learning styles.

NOTES provide
additional information—
for example, another
location in the book that
expands on a topic, or a
common error to watch
out for.

YOU DO IT sections walk
students through program
development step by step.

VIDEO LESSONS help
explain important chapter
concepts. Videos are part
of the text’s enhanced
CourseMate site.

The author does an excellent
job clarifying what my
students have historically had
trouble with.
—Lee Cottrell, Bradford
School, Pittsburgh

xxvii

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

THE DON’T DO IT ICON illustrates
how NOT to do something—for
example, having a dead code
path in a program. This icon
provides a visual jolt to the student,

are NOT to be emulated and making
students more careful to recognize
problems in existing code.

TWO TRUTHS & A LIE quizzes appear
after each chapter section, with
answers provided. The quiz contains
three statements based on the preceding
section of text—two statements are
true and one is false. Answers give
immediate feedback without “giving away”
answers to the multiple-choice questions
and programming problems later in
the chapter. Students also have the option
to take these quizzes electronically
through the enhanced CourseMate site.

DON'T DO IT sections at the end
of each chapter list advice for
avoiding common programming errors.

xxviii

F E A T U R E S

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Assessment
I find the flow of information superior
to [that of] other texts.

—Susan Peterson,
Henry Ford Community College

PROGRAMMING EXERCISES provide
opportunities to practice concepts. These
exercises increase in difficulty and allow
students to explore each major
programming concept presented in the
chapter. Additional programming
exercises are available in the Instructor's
Resource Kit.

REVIEW QUESTIONS test
student comprehension of the
major ideas and techniques
presented. Twenty questions
follow each chapter.

xxix

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CASE PROBLEMS provide opportunities
to build more detailed programs that
continue to incorporate increasing
functionality throughout the book.

DEBUGGING EXERCISES are
included with each chapter because
examining programs critically and
closely is a crucial programming skill.
Students can download these exercises
at www.CengageBrain.com and through
the CourseMate available for this text.
These fles are also available to
instructors through login.cengage.com.

GAME ZONE EXERCISES are included
at the end of each chapter. Students can
create games as an additional entertaining
way to understand key programming
concepts.

xxx

A S S E S SM EN T

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.CengageBrain.com

CHAPTER 1
Creating Java
Programs

In this chapter, you will:

Define basic programming terminology

Compare procedural and object-oriented programming

Describe the features of the Java programming language

Analyze a Java application that produces console output

Compile a Java class and correct syntax errors

Run a Java application and correct logical errors

Add comments to a Java class

Create a Java application that produces GUI output

Find help

Unless noted otherwise, all images are © 2014 Cengage Learning

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Learning Programming Terminology
A computer program is a set of instructions that you write to tell a computer what to do.
Computer equipment, such as a monitor or keyboard, is hardware, and programs are
software. A program that performs a task for a user (such as calculating and producing
paychecks, word processing, or playing a game) is application software; a program that
manages the computer itself (such as Windows or Linux) is system software. The logic
behind any computer program, whether it is an application or system program, determines
the exact order of instructions needed to produce desired results. Much of this book describes
how to develop the logic to create application software.

All computer programs ultimately are converted to machine language. Machine language, or
machine code, is the most basic set of instructions that a computer can execute. Each type of
processor has its own set of machine language instructions. Programmers often describe
machine language using 1s and 0s to represent the on-and-off circuitry of computer systems.

Machine language is a low-level programming language, or one that corresponds closely to a
computer processor’s circuitry. Low-level languages require you to use memory addresses for
specific machines when you create commands. This means that low-level languages are
difficult to use and must be customized for every type of machine on which a program runs.

Fortunately, programming has evolved into an easier task because of the development of
high-level programming languages. A high-level programming language allows you to use a
vocabulary of reasonable terms, such as read, write, or add, instead of the sequences of 1s and
0s that perform these tasks. High-level languages also allow you to assign single-word,
intuitive names to areas of computer memory, such as hoursWorked or rateOfPay, rather
than having to remember the memory locations. Java is a high-level programming language.

Each high-level language has its own syntax, or rules of the language. For example, depending on
the specific high-level language, you might use the verb print or write to produce output. All
languages have a specific, limited vocabulary (the language’s keywords) and a specific set of rules
for using that vocabulary.When you are learning a computer programming language, such as Java,
C++, or Visual Basic, you really are learning the vocabulary and syntax rules for that language.

Using a programming language, programmers write a series of program statements, similar
to English sentences, to carry out the tasks they want the program to perform. Program
statements are also known as commands because they are orders to the computer, such as
“output this word” or “add these two numbers.”

After the program statements are written, high-level language programmers use a computer
program called a compiler or interpreter to translate their language statements into machine
language. A compiler translates an entire program before carrying out the statement, or
executing it, whereas an interpreter translates one program statement at a time, executing a
statement as soon as it is translated.

Whether you use a compiler or interpreter often depends on the programming language you use. For
example, C++ is a compiled language, and Visual Basic is an interpreted language. Each type of translator
has its supporters; programs written in compiled languages execute more quickly, whereas programs
written in interpreted languages are easier to develop and debug. Java uses the best of both technologies: a
compiler to translate your programming statements and an interpreter to read the compiled code line by line
when the program executes (also called at run time).

CH A P T E R 1 Creating Java Programs

2

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Compilers and interpreters issue one or more error messages each time they encounter an
invalid program statement—that is, a statement containing a syntax error, or misuse of the
language. Subsequently, the programmer can correct the error and attempt another
translation by compiling or interpreting the program again. Locating and repairing all syntax
errors is the first part of the process of debugging a program—freeing the program of all
errors. Figure 1-1 illustrates the steps a programmer takes while developing an executable
program. You will learn more about debugging Java programs later in this chapter.

De
bu

gg
in

g
pr

oc
es

s

De
bu

gg
in

g
pr

oc
es

s

Yes

Yes

No

No

Use translating software (a compiler or
interpreter) that translates programming
language statements to machine language

Examine list of
syntax errors

Write program language statements
that correspond to the logic

Examine
program output

Are there runtime
errors or errors
in the output?

Can all statements
be successfully
translated?

Plan program logic

Execute the program

Figure 1-1 The program development process

Learning Programming Terminology

3

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As Figure 1-1 shows, you might be able to use a computer language’s syntax correctly but still
have errors to correct. In addition to learning the correct syntax for a particular language,
a programmer must also understand computer programming logic. When you develop
a program of any significant size, you should plan its logic before you write any program
statements. Correct logic requires that all the right commands be issued in the appropriate
order. Examples of logical errors include multiplying two values when you meant to divide
them or producing output prior to obtaining the appropriate input.

Correcting logical errors is the second part of the debugging process and is much more
difficult than correcting syntax errors. Syntax errors are discovered when you compile a
program, but often you can identify logical errors only when you examine a program’s first
output. For example, if you know an employee’s paycheck should contain the value $5,000,
but you see that it holds $50 or $50,000 after you execute a payroll program, a logical error
has occurred. Tools that help you visualize and understand logic are presented in the chapter
Making Decisions.

Programmers call some logical errors semantic errors. For example, if you misspell a programming-
language word, you commit a syntax error, but if you use a correct word in the wrong context, you commit
a semantic error.

TWO TRUTHS & A LIE

Learning Programming Terminology

In each “Two Truths & a Lie” section, two of the numbered statements are true, and one
is false. Identify the false statement and explain why it is false.

1. Unlike a low-level programming language, a high-level programming language
allows you to use a vocabulary of reasonable terms instead of the sequences of on
and off switches that perform the corresponding tasks.

2. A compiler executes each program statement as soon as it is translated, whereas
an interpreter translates all of a program’s statements before executing any.

3. A syntax error occurs when you misuse a language; locating and repairing all
syntax errors is part of the process of debugging a program.

. det al snart si ti sa noos sat ne met at s a gni t ucexe, e mit at a
t ne met at s mar gor p eno set al snart r et er pr et ni na saer ehw, st ne met at s ynat uo

gni yrr ac er of eb mar gor p eri t ne na set al snart r eli p moc A. 2# si t ne met at s esl af ehT

CH A P T E R 1 Creating Java Programs

4

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Comparing Procedural and Object-Oriented
Programming Concepts
Two popular approaches to writing computer programs are procedural programming and
object-oriented programming.

Procedural Programming
Procedural programming is a style of programming in which operations are executed one
after another in sequence. In procedural applications, you create names for computer
memory locations that can hold values—for example, numbers and text—in electronic form.
The named computer memory locations are called variables because they hold values that
might vary. For example, a payroll program written for a company might contain a variable
named rateOfPay. The memory location referenced by the name rateOfPay might contain
different values (a different value for every employee of the company) at different times.
During the execution of the payroll program, each value stored under the name rateOfPay
might have many operations performed on it—the value might be read from an input device,
the value might be multiplied by another variable representing hours worked, and the
value might be printed on paper. For convenience, the individual operations used in
a computer program are often grouped into logical units called procedures. For
example, a series of four or five comparisons and calculations that together determine
a person’s federal withholding tax value might be grouped as a procedure named
calculateFederalWithholding. A procedural program defines the variable memory
locations and then calls a series of procedures to input, manipulate, and output the values
stored in those locations. When a program calls a procedure, the current logic is temporarily
abandoned so that the procedure’s commands can execute. A single procedural program
often contains hundreds of variables and procedure calls. Procedures are also called modules,
methods, functions, and subroutines. Users of different programming languages tend to use
different terms. As you will learn later in this chapter, Java programmers most frequently
use the term method.

Object-Oriented Programming
Object-oriented programming is an extension of procedural programming in which you take
a slightly different approach to writing computer programs. Writing object-oriented
programs involves creating classes, which are blueprints for objects; creating objects from
those classes; and creating applications that use those objects. After creation, classes can be
reused repeatedly to develop new programs. Thinking in an object-oriented manner involves
envisioning program components as objects that belong to classes and that are similar to
concrete objects in the real world; then, you can manipulate the objects and have them
interrelate with each other to achieve a desired result.

Programmers use OO as an abbreviation for object-oriented; it is pronounced “oh oh.” Object-oriented
programming is abbreviated OOP, and pronounced to rhyme with soup.

Comparing Procedural and Object-Oriented Programming Concepts

5

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Originally, object-oriented programming was used most frequently for two major types of
applications:

l Computer simulations, which attempt to mimic real-world activities so that their
processes can be improved or so that users can better understand how the real-world
processes operate

l Graphical user interfaces, or GUIs (pronounced “gooeys”), which allow users to interact
with a program in a graphical environment

Thinking about objects in these two types of applications makes sense. For example, a city
might want to develop a program that simulates traffic patterns to help prevent traffic tie-ups.
By creating a model with objects such as cars and pedestrians that contain their own data and
rules for behavior, the simulation can be set in motion. For example, each car object has a
specific current speed and a procedure for changing that speed. By creating a model of city
traffic using objects, a computer can create a simulation of a real city at rush hour.

Creating a GUI environment for users also is a natural use for object orientation. It is easy to
think of the components a user manipulates on a computer screen, such as buttons and scroll
bars, as similar to real-world objects. Each GUI object contains data—for example, a button
on a screen has a specific size and color. Each object also contains behaviors—for example,
each button can be clicked and reacts in a specific way when clicked. Some people consider
the term object-oriented programming to be synonymous with GUI programming, but object-
oriented programming means more. Although many GUI programs are object oriented, do
not assume that all object-oriented programs use GUI objects. Modern businesses use object-
oriented design techniques when developing all sorts of business applications, whether they
are GUI applications or not.

Understanding object-oriented programming requires grasping three basic concepts:

l Encapsulation as it applies to classes as objects

l Inheritance

l Polymorphism

Understanding Classes, Objects, and Encapsulation
In object-oriented terminology, a class is a term that describes a group or collection of
objects with common properties. In the same way that a blueprint exists before any houses
are built from it, and a recipe exists before any cookies are baked from it, so does a class
definition exist before any objects are created from it. A class definition describes what
attributes its objects will have and what those objects will be able to do. Attributes are the
characteristics that define an object; they are properties of the object. When you learn a
programming language such as Java, you learn to work with two types of classes: those that have
already been developed by the language’s creators and your own new, customized classes.

An object is a specific, concrete instance of a class. When you create an object, you
instantiate it. You can create objects from classes that you write and from classes written by
other programmers, including Java’s creators. The values contained in an object’s properties

CH A P T E R 1 Creating Java Programs

6

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

often differentiate instances of the same class from one another. For example, the class
Automobile describes what Automobile objects are like. Some properties of the Automobile
class are make, model, year, and color. Each Automobile object possesses the same attributes
but not, of course, the same values for those attributes. One Automobile might be a 2009
white Ford Taurus and another might be a 2014 red Chevrolet Camaro. Similarly, your dog
has the properties of all Dogs, including a breed, name, age, and whether his shots are current.
The values of the properties of an object are also referred to as the object’s state. In other
words, you can think of objects as roughly equivalent to nouns, and of their attributes as
similar to adjectives that describe the nouns.

When you understand an object’s class, you understand the characteristics of the object.
If your friend purchases an Automobile, you know it has a model name, and if your friend gets
a Dog, you know the dog has a breed. Knowing what attributes exist for classes allows you
to ask appropriate questions about the states or values of those attributes. For example,
you might ask how many miles the car gets per gallon, but you would not ask whether the
car has had shots. Similarly, in a GUI operating environment, you expect each component
to have specific, consistent attributes and methods, such as a window having a title bar and
a close button, because each component gains these properties as a member of the general
class of GUI components. Figure 1-2 shows the relationship of some Dog objects to the
Dog class.

By convention, programmers using Java begin their class names with an uppercase letter. Thus, the class
that defines the attributes and methods of an automobile would probably be named Automobile, and
the class for dogs would probably be named Dog. However, following this convention is not required to
produce a workable program.

Dog class definition Dog class instances (objects)

Every Dog that is
created will have
a:

Ginger
6
Akita
Up to date

Bowser
2
Retriever
Up to date

Roxy
1
Beagle
Up to date

Name

Age

Breed

Shot status

Figure 1-2 A class definition and some objects created from it

Comparing Procedural and Object-Oriented Programming Concepts

7

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Besides defining properties, classes define methods their objects can use. A method is a self-
contained block of program code that carries out some action, similar to a procedure in a
procedural program. An Automobile, for example, might have methods for moving forward,
moving backward, being filled with gasoline, and being washed. Some methods can ascertain
certain attributes, such as the current speed of an Automobile and the status of its gas tank.
Similarly, a Dog can walk or run, eat food, and get a bath, and there are methods to determine
how hungry the Dog is or what its name is. GUI operating system components can be
maximized, minimized, and dragged. In other words, if objects are similar to nouns, then
methods are similar to verbs.

In object-oriented classes, attributes and methods are encapsulated into objects that are then
used much like real-world objects. Encapsulation refers to two closely related object-oriented
notions:

l Encapsulation is the enclosure of data and methods within an object. Encapsulation allows
you to treat all of an object’s methods and data as a single entity. Just as an actual dog
contains all of its attributes and abilities, so would a program’s Dog object.

l Encapsulation also refers to the concealment of an object’s data and methods from outside
sources. Concealing data is sometimes called information hiding, and concealing how
methods work is implementation hiding; you will learn more about both terms in the
chapter Using Methods, Classes, and Objects. Encapsulation lets you hide specific object
attributes and methods from outside sources and provides the security that keeps data and
methods safe from inadvertent changes.

If an object’s methods are well written, the user is unaware of the low-level details of how the
methods are executed, and the user must simply understand the interface or interaction
between the method and the object. For example, if you can fill your Automobile with
gasoline, it is because you understand the interface between the gas pump nozzle and the
vehicle’s gas tank opening. You don’t need to understand how the pump works mechanically
or where the gas tank is located inside your vehicle. If you can read your speedometer, it does
not matter how the displayed figure is calculated. As a matter of fact, if someone produces a
superior, more accurate speed-determining device and inserts it in your Automobile, you
don’t have to know or care how it operates, as long as your interface remains the same. The
same principles apply to well-constructed classes used in object-oriented programs—
programs that use classes only need to work with interfaces.

Understanding Inheritance and Polymorphism
An important feature of object-oriented program design is inheritance—the ability to create
classes that share the attributes and methods of existing classes but with more specific
features. For example, Automobile is a class, and all Automobile objects share many traits and
abilities. Convertible is a class that inherits from the Automobile class; a Convertible is a
type of Automobile that has and can do everything a “plain” Automobile does—but with an
added mechanism for and an added ability to lower its top. (In turn, Automobile inherits from
the Vehicle class.) Convertible is not an object—it is a class. A specific Convertible is an
object—for example, my1967BlueMustangConvertible.

CH A P T E R 1 Creating Java Programs

8

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Inheritance helps you understand real-world objects. For example, the first time you
encounter a Convertible, you already understand how the ignition, brakes, door locks, and
other Automobile systems work. You need to be concerned only with the attributes and
methods that are “new” with a Convertible. The advantages in programming are the same—
you can build new classes based on existing classes and concentrate on the specialized
features you are adding.

A final important concept in object-oriented terminology is polymorphism. Literally,
polymorphism means “many forms”—it describes the feature of languages that allows the
same word or symbol to be interpreted correctly in different situations based on the
context. For example, although the classes Automobile, Sailboat, and Airplane all inherit
from Vehicle, turn and stop methods work differently for instances of those classes.
The advantages of polymorphism will become more apparent when you begin to create
GUI applications containing features such as windows, buttons, and menu bars. In a GUI
application, it is convenient to remember one method name, such as setColor or setHeight

and have it work correctly no matter what type of object you are modifying.

When you see a plus sign (+) between two numbers, you understand they are being
added. When you see it carved in a tree between two names, you understand that the
names are linked romantically. Because the symbol has diverse meanings based on context,
it is polymorphic. Chapters 10 and 11 provide more information about inheritance and
polymorphism and how they are implemented in Java.

Watch the video Object-Oriented Programming.

TWO TRUTHS & A LIE

Comparing Procedural and Object-Oriented
Programming Concepts

1. An instance of a class is a created object that possesses the attributes and
methods described in the class definition.

2. Encapsulation protects data by hiding it within an object.

3. Polymorphism is the ability to create classes that share the attributes and methods
of existing classes, but with more specific features.

. snoi t ca el pi tl u mesuac ot mr et eno esu ot ytili ba eht sebi r csed msi hpr o myl op
; ser ut aef cifi ceps er o mhti wt ub sessal c gni t si xef o sdoht e mdna set ubi rtt a

eht er ahs t aht sessal c et aer c ot ytili ba eht si ecnati r ehnI . 3# si t ne met at s esl af ehT

Comparing Procedural and Object-Oriented Programming Concepts

9

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

