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Preface

Java Programming, Seventh Edition, provides the beginning programmer with a guide to
developing applications using the Java programming language. Java is popular among
professional programmers because it can be used to build visually interesting graphical user
interface (GUI) and Web-based applications. Java also provides an excellent environment for
the beginning programmer—a student can quickly build useful programs while learning the
basics of structured and object-oriented programming techniques.

This textbook assumes that you have little or no programming experience. This book
provides a solid background in good object-oriented programming techniques and introduces
terminology using clear, familiar language. The writing is nontechnical and emphasizes good
programming practices. The programming examples are business examples; they do not
assume a mathematical background beyond high-school business math. In addition, the
examples illustrate only one or two major points; they do not contain so many features
that you become lost following irrelevant and extraneous details. The explanations in this
textbook are written clearly in straightforward sentences, making it easier for native and
non-native English speakers alike to master the programming concepts. Complete, working
programs appear frequently in each chapter; these examples help students make the
transition from the theoretical to the practical. The code presented in each chapter can also
be downloaded from the publisher’s Web site, so students can easily run the programs and
experiment with changes to them.

The student using Java Programming, Seventh Edition, builds applications from the bottom
up rather than starting with existing objects. This facilitates a deeper understanding of the
concepts used in object-oriented programming and engenders appreciation for the existing
objects students use as their knowledge of the language advances. When students complete
this book, they will know how to modify and create simple Java programs, and they will have
the tools to create more complex examples. They also will have a fundamental knowledge of
object-oriented programming, which will serve them well in advanced Java courses or in
studying other object-oriented languages such as C++, C#, and Visual Basic.

Organization and Coverage
Java Programming, Seventh Edition, presents Java programming concepts, enforcing good
style, logical thinking, and the object-oriented paradigm. Objects are covered right from the
beginning, earlier than in many other textbooks. You create your first Java program in
Chapter 1. Chapters 2, 3, and 4 increase your understanding of how data, classes, objects, and
methods interact in an object-oriented environment.

xxi

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Chapters 5 and 6 explore input and repetition structures, which are the backbone of
programming logic and essential to creating useful programs in any language. You learn the
special considerations of string and array manipulation in Chapters 7, 8, and 9.

Chapters 10, 11, and 12 thoroughly cover inheritance and exception handling. Inheritance is
the object-oriented concept that allows you to develop new objects quickly by adapting the
features of existing objects; exception handling is the object-oriented approach to handling
errors. Both are important concepts in object-oriented design. Chapter 13 provides
information on handling files so you can permanently store and retrieve program output.

Chapters 14 and 15 introduce GUI Swing components—Java’s visually pleasing, user-friendly
widgets—and their layout managers. Chapters 16 and 17 show you ways to provide
interactive excitement using graphics, applets, images, and sound.

Features
The following features are new for the Seventh Edition:

l YOU DO IT: In each chapter, step-by-step exercises help students create multiple working
programs that emphasize the logic a programmer uses in choosing statements to include.
These sections provide a means for students to achieve success on their own—even those
in online or distance learning classes. Previous editions of the book contained a long,
multipart “You Do It” section at the end of each chapter, but in this edition, more and
shorter sections follow important chapter topics so the student can focus on one new
concept at a time.

l CASES: Each chapter contains two running case problems. These cases represent projects
that continue to grow throughout a semester using concepts learned in each new chapter.
Two cases allow instructors to assign different cases in alternate semesters or to divide
students in a class into two case teams.

l PROGRAMMING EXERCISES: Each chapter concludes with meaningful programming
exercises that provide additional practice of the skills and concepts learned in the chapter.
These exercises vary in difficulty and are designed to allow exploration of logical
programming concepts. Each chapter contains several new programming exercises not
seen in previous editions.

l INCREASED EMPHASIS ON STUDENT RESEARCH: In this edition, the student frequently
is directed to the Java Web site to investigate classes and methods. Computer languages
evolve, and programming professionals must understand how to find the latest language
improvements. This book encourages independent research.

Additionally, Java Programming, Seventh Edition, includes the following features:

l OBJECTIVES: Each chapter begins with a list of objectives so you know the topics that will
be presented in the chapter. In addition to providing a quick reference to topics covered,
this feature provides a useful study aid.
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l NOTES: These highlighted tips provide additional information—for example, an
alternative method of performing a procedure, another term for a concept, background
information on a technique, or a common error to avoid.

l FIGURES: Each chapter contains many figures. Code figures are most frequently 25 lines
or fewer, illustrating one concept at a time. Frequent screen shots show exactly how
program output appears. Callouts appear where needed to emphasize a point.

l COLOR: The code figures in each chapter contain all Java keywords in blue. This helps
students identify keywords more easily, distinguishing them from programmer-selected
names.

l FILES: More than 200 student files can be downloaded from the publisher’s Web site.
Most files contain the code presented in the figures in each chapter; students can run
the code for themselves, view the output, and make changes to the code to observe the
effects. Other files include debugging exercises that help students improve their
programming skills.

l TWO TRUTHS AND A LIE: A short quiz reviews each chapter section, with answers
provided. This quiz contains three statements based on the preceding section of text—two
statements are true and one is false. Over the years, students have requested answers
to problems, but we have hesitated to distribute them in case instructors want to use
problems as assignments or test questions. These true-false quizzes provide students with
immediate feedback as they read, without “giving away” answers to the multiple-choice
questions and programming exercises.

l DON’T DO IT: This section at the end of each chapter summarizes common mistakes and
pitfalls that plague new programmers while learning the current topic.

l KEY TERMS: Each chapter includes a list of newly introduced vocabulary, shown in the
order of appearance in the text. The list of key terms provides a short review of the major
concepts in the chapter.

l SUMMARIES: Following each chapter is a summary that recaps the programming
concepts and techniques covered in the chapter. This feature provides a concise means for
students to check their understanding of the main points in each chapter.

l REVIEW QUESTIONS: Each chapter includes 20 multiple-choice questions that serve as a
review of chapter topics.

l GAME ZONE: Each chapter provides one or more exercises in which students create
interactive games using the programming techniques learned up to that point; 70 game
programs are suggested in the book. The games are fun to create and play; writing them
motivates students to master the necessary programming techniques. Students might
exchange completed game programs with each other, suggesting improvements and
discovering alternate ways to accomplish tasks.

l GLOSSARY: A glossary contains definitions for all key terms in the book, presented in
alphabetical order.
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l APPENDICES: This edition includes useful appendices on working with the Java platform,
data representation, formatting output, generating random numbers, and creating Javadoc
comments.

l QUALITY: Every program example, exercise, and game solution was tested by the author
and then tested again by a quality assurance team using Java Standard Edition (SE) 7, the
most recent version available.

CourseMate
The more you study, the better the results. Make the most of your study time by accessing
everything you need to succeed in one place. Read your textbook, take notes, review
flashcards, watch videos, and take practice quizzes online. CourseMate goes beyond the book
to deliver what you need! Learn more at www.cengage.com/coursemate.

The Java Programming CourseMate includes:

l Debugging Exercises: Four error-filled programs accompany each chapter. By
debugging these programs, students can gain expertise in program logic in general and the
Java programming language in particular.

l Video Lessons: Each chapter is accompanied by at least three video lessons that help to
explain important chapter concepts. These videos were created and narrated by the
author.

l Interactive Study Aids: An interactive eBook, quizzes, flashcards, and more!

Instructors may add CourseMate to the textbook package, or students may purchase
CourseMate directly at www.CengageBrain.com.

Instructor Resources
The following teaching tools are available for download at our Instructor Companion Site.
Simply search for this text at login.cengage.com. An instructor login is required.

l Electronic Instructor’s Manual: The Instructor’s Manual that accompanies this
textbook includes additional instructional material to assist in class preparation, including
items such as Overviews, Chapter Objectives, Teaching Tips, Quick Quizzes, Class
Discussion Topics, Additional Projects, Additional Resources, and Key Terms. A sample
syllabus is also available. Additional exercises in the Instructor’s Manual include:

� Tough Questions: Two or more fairly difficult questions that an applicant might
encounter in a technical job interview accompany each chapter. These questions are
often open-ended; some involve coding and others might involve research.

� Up for Discussion: A few thought-provoking questions concerning programming in
general or Java in particular supplement each chapter. The questions can be used to
start classroom or online discussions, or to develop and encourage research, writing,
and language skills.
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� Programming exercises and solutions: Each chapter is accompanied by several
programming exercises to supplement those offered in the text. Instructors can use
these exercises as additional or alternate assignments, or as the basis for lectures.

l ExamView: This textbook is accompanied by ExamView, a powerful testing software
package that allows instructors to create and administer printed, computer (LAN-based),
and Internet-based exams. ExamView includes hundreds of questions that correspond to
the topics covered in this text, enabling students to generate detailed study guides that
include page references for further review. The computer-based and Internet testing
components allow students to take exams at their computers, and they save the instructor
time by grading each exam automatically. These test banks are also available in
Blackboard-compatible formats.

l PowerPoint Presentations: This text provides PowerPoint slides to accompany each
chapter. Slides may be used to guide classroom presentations, to make available to
students for chapter review, or to print as classroom handouts. Files are provided for every
figure in the text. Instructors may use the files to customize PowerPoint slides, illustrate
quizzes, or create handouts.

l Solutions: Solutions to “You Do It” exercises and all end-of-chapter exercises are
available. Annotated solutions are provided for some of the multiple-choice Review
Questions. For example, if students are likely to debate answer choices or not understand
the choice deemed to be the correct one, a rationale is provided.
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Read This Before
You Begin
The following information will help you as you prepare to use this textbook.

To the User of the Data Files
To complete the steps and projects in this book, you need data files that have been created
specifically for this book. Your instructor will provide the data files to you. You also can
obtain the files electronically from www.CengageBrain.com. Find the ISBN of your title on
the back cover of your book, then enter the ISBN in the search box at the top of the
Cengage Brain home page. You can find the data files on the product page that opens. Note
that you can use a computer in your school lab or your own computer to complete the
exercises in this book.

Using Your Own Computer
To use your own computer to complete the steps and exercises, you need the following:

l Software: Java SE 7, available from www.oracle.com/technetwork/java/index.html. Although
almost all of the examples in this book will work with earlier versions of Java, this book was
created using Java 7. The book clearly points out the few cases when an example is based on
Java 7 and will not work with earlier versions of Java. You also need a text editor, such as
Notepad. A few exercises ask you to use a browser, such as Internet Explorer.

l Hardware: If you are using Windows 7, the Java Web site suggests at least 128 MB
of memory and at least 98 MB of disk space. For other operating system requirements,
see http://java.com/en/download/help.
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Features
This text focuses on helping students become better programmers and understand
Java program development through a variety of key features. In addition to chapter
Objectives, Summaries, and Key Terms, these useful features will help students
regardless of their learning styles.

NOTES provide 
additional information—
for example, another 
location in the book that 
expands on a topic, or a 
common error to watch 
out for.

YOU DO IT sections walk
students through program
development step by step.

VIDEO LESSONS help 
explain important chapter 
concepts. Videos are part 
of the text’s enhanced 
CourseMate site.

The author does an excellent
job clarifying what my
students have historically had
trouble with.
—Lee Cottrell, Bradford
School, Pittsburgh

xxvii

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



THE DON’T DO IT ICON illustrates 
how NOT to do something—for 
example, having a dead code 
path in a program. This icon 
provides a visual jolt to the student, 

are NOT to be emulated and making 
students more careful to recognize 
problems in existing code.

TWO TRUTHS & A LIE quizzes appear 
after each chapter section, with
answers provided. The quiz contains
three statements based on the preceding
section of text—two statements are
true and one is false. Answers give
immediate feedback without “giving away”
answers to the multiple-choice questions
and programming problems later in
the chapter. Students also have the option
to take these quizzes electronically
through the enhanced CourseMate site.

DON'T DO IT sections at the end
of each chapter list advice for
avoiding common programming errors.
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Assessment
I find the flow of information superior
to [that of] other texts.

—Susan Peterson,
Henry Ford Community College

PROGRAMMING EXERCISES provide
opportunities to practice concepts. These
exercises increase in difficulty and allow
students to explore each major
programming concept presented in the
chapter. Additional programming
exercises are available in the Instructor's
Resource Kit.

REVIEW QUESTIONS test 
student comprehension of the
major ideas and techniques
presented. Twenty questions
follow each chapter.
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CASE PROBLEMS provide opportunities
to build more detailed programs that
continue to incorporate increasing
functionality throughout the book.

DEBUGGING EXERCISES are
included with each chapter because
examining programs critically and
closely is a crucial programming skill.
Students can download these exercises
at www.CengageBrain.com and through
the CourseMate available for this text.
These fles are also available to
instructors through login.cengage.com.

GAME ZONE EXERCISES are included
at the end of each chapter. Students can
create games as an additional entertaining
way to understand key programming
concepts.

xxx
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CHAPTER 1
Creating Java
Programs

In this chapter, you will:

Define basic programming terminology

Compare procedural and object-oriented programming

Describe the features of the Java programming language

Analyze a Java application that produces console output

Compile a Java class and correct syntax errors

Run a Java application and correct logical errors

Add comments to a Java class

Create a Java application that produces GUI output

Find help

Unless noted otherwise, all images are © 2014 Cengage Learning
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Learning Programming Terminology
A computer program is a set of instructions that you write to tell a computer what to do.
Computer equipment, such as a monitor or keyboard, is hardware, and programs are
software. A program that performs a task for a user (such as calculating and producing
paychecks, word processing, or playing a game) is application software; a program that
manages the computer itself (such as Windows or Linux) is system software. The logic
behind any computer program, whether it is an application or system program, determines
the exact order of instructions needed to produce desired results. Much of this book describes
how to develop the logic to create application software.

All computer programs ultimately are converted to machine language. Machine language, or
machine code, is the most basic set of instructions that a computer can execute. Each type of
processor has its own set of machine language instructions. Programmers often describe
machine language using 1s and 0s to represent the on-and-off circuitry of computer systems.

Machine language is a low-level programming language, or one that corresponds closely to a
computer processor’s circuitry. Low-level languages require you to use memory addresses for
specific machines when you create commands. This means that low-level languages are
difficult to use and must be customized for every type of machine on which a program runs.

Fortunately, programming has evolved into an easier task because of the development of
high-level programming languages. A high-level programming language allows you to use a
vocabulary of reasonable terms, such as read, write, or add, instead of the sequences of 1s and
0s that perform these tasks. High-level languages also allow you to assign single-word,
intuitive names to areas of computer memory, such as hoursWorked or rateOfPay, rather
than having to remember the memory locations. Java is a high-level programming language.

Each high-level language has its own syntax, or rules of the language. For example, depending on
the specific high-level language, you might use the verb print or write to produce output. All
languages have a specific, limited vocabulary (the language’s keywords) and a specific set of rules
for using that vocabulary.When you are learning a computer programming language, such as Java,
C++, or Visual Basic, you really are learning the vocabulary and syntax rules for that language.

Using a programming language, programmers write a series of program statements, similar
to English sentences, to carry out the tasks they want the program to perform. Program
statements are also known as commands because they are orders to the computer, such as
“output this word” or “add these two numbers.”

After the program statements are written, high-level language programmers use a computer
program called a compiler or interpreter to translate their language statements into machine
language. A compiler translates an entire program before carrying out the statement, or
executing it, whereas an interpreter translates one program statement at a time, executing a
statement as soon as it is translated.

Whether you use a compiler or interpreter often depends on the programming language you use. For
example, C++ is a compiled language, and Visual Basic is an interpreted language. Each type of translator
has its supporters; programs written in compiled languages execute more quickly, whereas programs
written in interpreted languages are easier to develop and debug. Java uses the best of both technologies: a
compiler to translate your programming statements and an interpreter to read the compiled code line by line
when the program executes (also called at run time).

CH A P T E R 1 Creating Java Programs
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Compilers and interpreters issue one or more error messages each time they encounter an
invalid program statement—that is, a statement containing a syntax error, or misuse of the
language. Subsequently, the programmer can correct the error and attempt another
translation by compiling or interpreting the program again. Locating and repairing all syntax
errors is the first part of the process of debugging a program—freeing the program of all
errors. Figure 1-1 illustrates the steps a programmer takes while developing an executable
program. You will learn more about debugging Java programs later in this chapter.
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Yes

No

No

Use translating software (a compiler or
interpreter) that translates programming
language statements to machine language

Examine list of
syntax errors

Write program language statements
that correspond to the logic

Examine
program output

Are there runtime
errors or errors
in the output?

Can all statements
be successfully
translated?

Plan program logic

Execute the program

Figure 1-1 The program development process
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As Figure 1-1 shows, you might be able to use a computer language’s syntax correctly but still
have errors to correct. In addition to learning the correct syntax for a particular language,
a programmer must also understand computer programming logic. When you develop
a program of any significant size, you should plan its logic before you write any program
statements. Correct logic requires that all the right commands be issued in the appropriate
order. Examples of logical errors include multiplying two values when you meant to divide
them or producing output prior to obtaining the appropriate input.

Correcting logical errors is the second part of the debugging process and is much more
difficult than correcting syntax errors. Syntax errors are discovered when you compile a
program, but often you can identify logical errors only when you examine a program’s first
output. For example, if you know an employee’s paycheck should contain the value $5,000,
but you see that it holds $50 or $50,000 after you execute a payroll program, a logical error
has occurred. Tools that help you visualize and understand logic are presented in the chapter
Making Decisions.

Programmers call some logical errors semantic errors. For example, if you misspell a programming-
language word, you commit a syntax error, but if you use a correct word in the wrong context, you commit
a semantic error.

TWO TRUTHS & A LIE

Learning Programming Terminology

In each “Two Truths & a Lie” section, two of the numbered statements are true, and one
is false. Identify the false statement and explain why it is false.

1. Unlike a low-level programming language, a high-level programming language
allows you to use a vocabulary of reasonable terms instead of the sequences of on
and off switches that perform the corresponding tasks.

2. A compiler executes each program statement as soon as it is translated, whereas
an interpreter translates all of a program’s statements before executing any.

3. A syntax error occurs when you misuse a language; locating and repairing all
syntax errors is part of the process of debugging a program.

. det al snart si ti sa noos sat ne met at s a gni t ucexe, e mit at a
t ne met at s mar gor p eno set al snart r et er pr et ni na saer ehw, st ne met at s ynat uo
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Comparing Procedural and Object-Oriented
Programming Concepts
Two popular approaches to writing computer programs are procedural programming and
object-oriented programming.

Procedural Programming
Procedural programming is a style of programming in which operations are executed one
after another in sequence. In procedural applications, you create names for computer
memory locations that can hold values—for example, numbers and text—in electronic form.
The named computer memory locations are called variables because they hold values that
might vary. For example, a payroll program written for a company might contain a variable
named rateOfPay. The memory location referenced by the name rateOfPay might contain
different values (a different value for every employee of the company) at different times.
During the execution of the payroll program, each value stored under the name rateOfPay
might have many operations performed on it—the value might be read from an input device,
the value might be multiplied by another variable representing hours worked, and the
value might be printed on paper. For convenience, the individual operations used in
a computer program are often grouped into logical units called procedures. For
example, a series of four or five comparisons and calculations that together determine
a person’s federal withholding tax value might be grouped as a procedure named
calculateFederalWithholding. A procedural program defines the variable memory
locations and then calls a series of procedures to input, manipulate, and output the values
stored in those locations. When a program calls a procedure, the current logic is temporarily
abandoned so that the procedure’s commands can execute. A single procedural program
often contains hundreds of variables and procedure calls. Procedures are also called modules,
methods, functions, and subroutines. Users of different programming languages tend to use
different terms. As you will learn later in this chapter, Java programmers most frequently
use the term method.

Object-Oriented Programming
Object-oriented programming is an extension of procedural programming in which you take
a slightly different approach to writing computer programs. Writing object-oriented
programs involves creating classes, which are blueprints for objects; creating objects from
those classes; and creating applications that use those objects. After creation, classes can be
reused repeatedly to develop new programs. Thinking in an object-oriented manner involves
envisioning program components as objects that belong to classes and that are similar to
concrete objects in the real world; then, you can manipulate the objects and have them
interrelate with each other to achieve a desired result.

Programmers use OO as an abbreviation for object-oriented; it is pronounced “oh oh.” Object-oriented
programming is abbreviated OOP, and pronounced to rhyme with soup.

Comparing Procedural and Object-Oriented Programming Concepts
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Originally, object-oriented programming was used most frequently for two major types of
applications:

l Computer simulations, which attempt to mimic real-world activities so that their
processes can be improved or so that users can better understand how the real-world
processes operate

l Graphical user interfaces, or GUIs (pronounced “gooeys”), which allow users to interact
with a program in a graphical environment

Thinking about objects in these two types of applications makes sense. For example, a city
might want to develop a program that simulates traffic patterns to help prevent traffic tie-ups.
By creating a model with objects such as cars and pedestrians that contain their own data and
rules for behavior, the simulation can be set in motion. For example, each car object has a
specific current speed and a procedure for changing that speed. By creating a model of city
traffic using objects, a computer can create a simulation of a real city at rush hour.

Creating a GUI environment for users also is a natural use for object orientation. It is easy to
think of the components a user manipulates on a computer screen, such as buttons and scroll
bars, as similar to real-world objects. Each GUI object contains data—for example, a button
on a screen has a specific size and color. Each object also contains behaviors—for example,
each button can be clicked and reacts in a specific way when clicked. Some people consider
the term object-oriented programming to be synonymous with GUI programming, but object-
oriented programming means more. Although many GUI programs are object oriented, do
not assume that all object-oriented programs use GUI objects. Modern businesses use object-
oriented design techniques when developing all sorts of business applications, whether they
are GUI applications or not.

Understanding object-oriented programming requires grasping three basic concepts:

l Encapsulation as it applies to classes as objects

l Inheritance

l Polymorphism

Understanding Classes, Objects, and Encapsulation
In object-oriented terminology, a class is a term that describes a group or collection of
objects with common properties. In the same way that a blueprint exists before any houses
are built from it, and a recipe exists before any cookies are baked from it, so does a class
definition exist before any objects are created from it. A class definition describes what
attributes its objects will have and what those objects will be able to do. Attributes are the
characteristics that define an object; they are properties of the object. When you learn a
programming language such as Java, you learn to work with two types of classes: those that have
already been developed by the language’s creators and your own new, customized classes.

An object is a specific, concrete instance of a class. When you create an object, you
instantiate it. You can create objects from classes that you write and from classes written by
other programmers, including Java’s creators. The values contained in an object’s properties

CH A P T E R 1 Creating Java Programs

6

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



often differentiate instances of the same class from one another. For example, the class
Automobile describes what Automobile objects are like. Some properties of the Automobile
class are make, model, year, and color. Each Automobile object possesses the same attributes
but not, of course, the same values for those attributes. One Automobile might be a 2009
white Ford Taurus and another might be a 2014 red Chevrolet Camaro. Similarly, your dog
has the properties of all Dogs, including a breed, name, age, and whether his shots are current.
The values of the properties of an object are also referred to as the object’s state. In other
words, you can think of objects as roughly equivalent to nouns, and of their attributes as
similar to adjectives that describe the nouns.

When you understand an object’s class, you understand the characteristics of the object.
If your friend purchases an Automobile, you know it has a model name, and if your friend gets
a Dog, you know the dog has a breed. Knowing what attributes exist for classes allows you
to ask appropriate questions about the states or values of those attributes. For example,
you might ask how many miles the car gets per gallon, but you would not ask whether the
car has had shots. Similarly, in a GUI operating environment, you expect each component
to have specific, consistent attributes and methods, such as a window having a title bar and
a close button, because each component gains these properties as a member of the general
class of GUI components. Figure 1-2 shows the relationship of some Dog objects to the
Dog class.

By convention, programmers using Java begin their class names with an uppercase letter. Thus, the class
that defines the attributes and methods of an automobile would probably be named Automobile, and
the class for dogs would probably be named Dog. However, following this convention is not required to
produce a workable program.

Dog class definition Dog class instances (objects)

Every Dog that is
created will have
a:

Ginger
6
Akita
Up to date

Bowser
2
Retriever
Up to date

Roxy
1
Beagle
Up to date

Name

Age

Breed

Shot status

Figure 1-2 A class definition and some objects created from it
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Besides defining properties, classes define methods their objects can use. A method is a self-
contained block of program code that carries out some action, similar to a procedure in a
procedural program. An Automobile, for example, might have methods for moving forward,
moving backward, being filled with gasoline, and being washed. Some methods can ascertain
certain attributes, such as the current speed of an Automobile and the status of its gas tank.
Similarly, a Dog can walk or run, eat food, and get a bath, and there are methods to determine
how hungry the Dog is or what its name is. GUI operating system components can be
maximized, minimized, and dragged. In other words, if objects are similar to nouns, then
methods are similar to verbs.

In object-oriented classes, attributes and methods are encapsulated into objects that are then
used much like real-world objects. Encapsulation refers to two closely related object-oriented
notions:

l Encapsulation is the enclosure of data and methods within an object. Encapsulation allows
you to treat all of an object’s methods and data as a single entity. Just as an actual dog
contains all of its attributes and abilities, so would a program’s Dog object.

l Encapsulation also refers to the concealment of an object’s data and methods from outside
sources. Concealing data is sometimes called information hiding, and concealing how
methods work is implementation hiding; you will learn more about both terms in the
chapter Using Methods, Classes, and Objects. Encapsulation lets you hide specific object
attributes and methods from outside sources and provides the security that keeps data and
methods safe from inadvertent changes.

If an object’s methods are well written, the user is unaware of the low-level details of how the
methods are executed, and the user must simply understand the interface or interaction
between the method and the object. For example, if you can fill your Automobile with
gasoline, it is because you understand the interface between the gas pump nozzle and the
vehicle’s gas tank opening. You don’t need to understand how the pump works mechanically
or where the gas tank is located inside your vehicle. If you can read your speedometer, it does
not matter how the displayed figure is calculated. As a matter of fact, if someone produces a
superior, more accurate speed-determining device and inserts it in your Automobile, you
don’t have to know or care how it operates, as long as your interface remains the same. The
same principles apply to well-constructed classes used in object-oriented programs—
programs that use classes only need to work with interfaces.

Understanding Inheritance and Polymorphism
An important feature of object-oriented program design is inheritance—the ability to create
classes that share the attributes and methods of existing classes but with more specific
features. For example, Automobile is a class, and all Automobile objects share many traits and
abilities. Convertible is a class that inherits from the Automobile class; a Convertible is a
type of Automobile that has and can do everything a “plain” Automobile does—but with an
added mechanism for and an added ability to lower its top. (In turn, Automobile inherits from
the Vehicle class.) Convertible is not an object—it is a class. A specific Convertible is an
object—for example, my1967BlueMustangConvertible.

CH A P T E R 1 Creating Java Programs
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Inheritance helps you understand real-world objects. For example, the first time you
encounter a Convertible, you already understand how the ignition, brakes, door locks, and
other Automobile systems work. You need to be concerned only with the attributes and
methods that are “new” with a Convertible. The advantages in programming are the same—
you can build new classes based on existing classes and concentrate on the specialized
features you are adding.

A final important concept in object-oriented terminology is polymorphism. Literally,
polymorphism means “many forms”—it describes the feature of languages that allows the
same word or symbol to be interpreted correctly in different situations based on the
context. For example, although the classes Automobile, Sailboat, and Airplane all inherit
from Vehicle, turn and stop methods work differently for instances of those classes.
The advantages of polymorphism will become more apparent when you begin to create
GUI applications containing features such as windows, buttons, and menu bars. In a GUI
application, it is convenient to remember one method name, such as setColor or setHeight

and have it work correctly no matter what type of object you are modifying.

When you see a plus sign ( + ) between two numbers, you understand they are being
added. When you see it carved in a tree between two names, you understand that the
names are linked romantically. Because the symbol has diverse meanings based on context,
it is polymorphic. Chapters 10 and 11 provide more information about inheritance and
polymorphism and how they are implemented in Java.

Watch the video Object-Oriented Programming.

TWO TRUTHS & A LIE

Comparing Procedural and Object-Oriented
Programming Concepts

1. An instance of a class is a created object that possesses the attributes and
methods described in the class definition.

2. Encapsulation protects data by hiding it within an object.

3. Polymorphism is the ability to create classes that share the attributes and methods
of existing classes, but with more specific features.

. snoi t ca el pi tl u mesuac ot mr et eno esu ot ytili ba eht sebi r csed msi hpr o myl op
; ser ut aef cifi ceps er o mhti wt ub sessal c gni t si xef o sdoht e mdna set ubi rtt a

eht er ahs t aht sessal c et aer c ot ytili ba eht si ecnati r ehnI . 3# si t ne met at s esl af ehT
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